
J .  Fluidilferh. (1989), vol. 198, p p .  101-114 

Printed in Great Britain 

101 

On the stability of gas bubbles rising in an 
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The stability to three dimensional disturbances of bubbles rising rectilinearly in an 
inviscid fluid is studied numerically. It is found, in contrast with earlier work, that 
the interaction of hydrodynamic pressure forces and surface tension does not lead to 
linear instability of the bubble path. 

1. Introduction 
An easily observed example of the onset of instability is the spiralling or zig-zag 

motion of gas bubbles rising in a pure fluid. For bubbles rising freely in an infinite 
media, it is possible to identify (Clift, Grace & Weber 1978; Harper 1972; Rosenberg 
1950) three important dimensionless parameters which may be used to classify the 
motion. These are the Reynolds number, 

the Eotvos number, 

and the Morton number, 

Here p is the fluid density, re is the equivalent radius of the bubble which may be 
obtained directly from the bubble volume, U is a characteristic velocity, ,u is the 
dynamic viscosity, g is the acceleration due to  gravity, and w is the coefficient of 
surface tension. Ap is the difference in densities between the fluid exterior to a droplet 
and the fluid interior. For bubbles Ap = p. The last of these parameters, the Morton 
number, is strictly a function of fluid properties and may be used to classify the type 
of fluid under consideration. 

Pure fluids of low viscosity possess very low values of M ( x lo-’) and it is for these 
fluids that spiralling is observed. The typical Reynolds number for the phenomenon 
is Re = 200 to 1000 and the Eotvos number is in the range 1 < Eo < 10. 

It is now commonly accepted that the spiralling motions are related to wake 
instability. However, until the numerical calculations of Ryskin & Leal (1984a, b)  it 
was unclear whether flow about a bubble free surface could generate a closed 
separation bubble. Ryskin & Leal have presented numerical solutions of the steady 
axisymmetric Navier-Stokes equations which show a definite wake structure at 
moderate Reynolds numbers. While a stability analysis of these flows has yet to be 
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performed, it is clear that an important assumption for the wake shedding 
hypothesis, i.e. the existence of a wake, is valid. 

An alternative explanation of the spiralling phenomenon was proposed by 
Hartunian & Sears (1957). They performed an experimental study in order to test a 
conjecture of von Kkrman that the crucial dimensionless parameter in determining 
the onset of spiralling was the Weber number. The Weber number, given by We = 
U(pr,/a)i may be computed from the Reynolds number, Eotviis number and Morton 
number and is a measure of the ratio of inertial forces relative to surface tension. The 
experiments showed the onset of instability a t  a critical Reynolds number of 200 for 
the fluids of higher viscosity (larger M )  while for fluids of low M the criterion was a 
critical Weber number of roughly 1.3. This led to the conclusion that for fluids of very 
low M spiralling may be the result of an inviscid unstable interaction between 
surface tension and pressure. 

Hartunian & Sears (1957) then presented a stability analysis of the inviscid flow 
about a closed free surface taking into account the effects of surface tension. In  order 
to simplify the analysis they initially assumed the rising bubble was spherical even 
for We > 0 and linearized the equations of motion about the steady state 
corresponding to a spherical bubble. This is not consistent since the inviscid flow 
deforms the free surface, and further calculations were made in an attempt to 
incorporate the deformation of the bubble during steady rise. All calculations 
revealed an instability of the centroid with those attempting to correct for 
deformation indicating a critical Weber number in close agreement with experiment. 

I n  this paper we have repeated this analysis but, using a numerical approach, we 
have incorporated in a self-consistent manner the deformation of the bubble. Our 
results show no instability. I n  $ 2  we state the problem in mathematical terms and 
describe the calculation of the steady states. A previous calculation of these steady 
solutions had been given by Miksis, Vanden-Broeck & Keller (1981). I n  $ 3  the results 
of the stability analysis are presented and reasons are given for the discrepancy 
between our work and that of Hartunian & Sears. Some conclusions are presented in 
§4. 

2. Calculation of steadily rising inviscid bubbles 
We consider the motion of an incompressible fluid of small viscosity produced by 

a steady rising gas bubble. Viscosity and gravity are both neglected, In reality, the 
velocity of the bubble is determined by the balance between the small viscous and 
gravitational effects. The assumption being explored here is that, once these effects 
determine the rectilinear velocity, the shape of the bubble and the stability of the 
flow are governed by the balance between inviscid pressure forces and surface 
tension. We therefore assume the flow is irrotational. An alternative inviscid 
formulation which attempts t o  incorporate viscosity in an approximate way is given 
by Miksis, Vanden-Broeck & Keller (1982). The velocity potential @ satisfies 
Laplace’s equation, and its evolution is governed by the Bernoulli equation 
evaluated at the bubble surface : 

Here p is the density of the fluid, cr is the coefficient of surface tension, R,, R,  are the 
principal radii of curvature of the bubble surface and p ,  is the interior pressure of the 
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bubble. The fluid is assumed to be at) rest a t  infinity and the (constant) pressure there 
is taken to be zero. In  spherical polar coordinates ( r , 0 , $ )  (2.1) becomes 

The bubble radius R(0,q5, t )  obeys the kinematic condition 

aR 1 aRaQ i a@ 
at R2 a8 ae ~2 s i n z ( 0 ) v q  = Zy (2.3) --+---+ 

where all partial derivatives are evaluated on the bubble surface r = R(0,  q5, t) .  
We consider solutions which represent steady flow caused by rectilinear motion of 

the bubble with constant velocity U .  In  this case we may rewrite the equations of 
motion in a frame translating with the bubble. We also restrict our attention to 
solutions which are axisymmetric about the direction of rise which we take as the z- 
axis. The potential CP can be written 

CP = - U z  + G(r, 0) = - Ur cos 0 + G ( r ,  0). (2.4) 

The equations of motion become 

V2G(r, 0) = 0, 

exterior to the bubble with the conditions 

( - U  cosO+Gr)--(UR R, sinB+G,) = 0, 
R2 

1 1 1 I [  ( - U cos 0+ Gr)2  +- ( U R  sin 
R2 

imposed on the deformed surface. The subscripts denote differentiation with respect 
to the indicated variable. 

For a given velocity U ,  equations (2.4-2.7) comprise a nonlinear boundary-value 
problem for the unknowns R, G .  and pi. In  terms of the dimensionless variables 

the Bernoulli equation (2.7) becomes 

where W e ,  the Weber number, is defined in § 1 and re is the equivalent radius of the 
bubble defined in terms of the bubble volume V :  

V = 8.r:. (2.9) 

The dimensionless form of the Bernoulli equation suggests that we must specify the 
Weber number in order to pose uniquely the solution to (2.4)-(2.7). Thus in addition 
to the bubble velocity, fluid density and coefficient of surface tension we must also 
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specify the equivalent radius of the bubble. This is done through the volume 
condition 

rB3(0)d(cos0)  0 = 2r;. (2.10) 

Finally in order to  fix properly the origin of the spherical coordinate system we also 
specify the location of the bubble centroid : 

R4(6) cos 0 d(cos 0) = 0. (2.11) 

Equations (2.5)-(2.7), (2.10), (2.11) possess isolated solutions and can be used now to 
determine pi, R(0) ,  and G(r ,  0) in terms of U ,  p,  CT, and re. 

Solutions of these equations have been obtained numerically by Miksis et al. (1981) 
who utilized a boundary integral formulation of Laplace’s equation. This results in 
a nonlinear integro-differential equation for the bubble surface and potential. We 
chose instead to  represent the solution as a truncated series in Legendre polynomials : 

N 

R(0)  = C A,P,(cos0), 
n=o 

P, (cos 0) 
@(r,  6 )  = -Ur cos6+ C B, rn+l . 

n-o 

(2.12) 

(2.13) 

Since the volume is fixed there can be no source term in (2.13) and hence 

Bo = 0. (2.14) 

The method of collocation is used to generate a nonlinear system of equations for 
the coefficients A,, B,, which is solved by Newton’s method. Since our basis 
functions are Legendre polynomials a natural choice for the collocation points are the 
roots of PN+,(0) given by 

Bi:PN+, ( ~ 0 ~ 0 ~ )  = 0 (i = 1, ..., N+l ) .  (2.15) 

Evaluating the equations (2.6, 2.7) a t  the N + l  selected points yields 2N+2 
equations. Along with the constraints (2.10), (2.11), (2.14) there are 2N+5 equations 
for the 2N+ 3 unknowns A,, B,, (n = 0 , .  . .,w and pi.t 

This discrepancy between the number of equations and unknowns arises because 
the potential must obey integral constraints when the conditions (2.10) and (2.1 1) are 
satisfied. The conservation of volume implies that  the system of equations (2.12-2.14) 

(2.16) 

Therefore the values of the potential at the collocation points are not independent 
and satisfy the discretized form of condition (2.16). As a result, the use of collocation 
on equations (2.6-2.7) would lead to a dependent system of equations. However the 

t The justification of the approach described above is not at all rigorous and is based on physical 
arguments for the existence of solutions to  (2.17) with B, = 0. There are alternative methods for 
isolating unique solutions such as the choice of different collocation points 8, or the use of a least- 
squares approach. 
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method of collocation has the advantage that it is much easier to implement 
numerically. In order to retain this advantage we use the method of inflation (akin 
to the method of undetermined multipliers) devised by Chen & Saffman (1980) and 
rewrite the kinematic condition in the form 

1 R 
(U cos 8 - G,) + 9 (UR sin 8 + Go) + fl(8) [ rR'(8 ' )  cos 8' d(cos 8') + f2(8) Bo = 0, 

R2 0 

(2.17) 

where fi, f2 are arbitrary functions of 8. We now retain (2.10) and drop (2.11) and 
(2.14). The number of equations, (2.6), (2.10), (2.17), now matches the number of 
unknowns. The arbitrary functions fl(8), f2(8) are chosen so that the resulting 
Jacobian of the system is invertible. This artifice effectively folds in the extra 
equations and isolates the solutions obeying (2.11) and (2.14). 

Note that our formulation is not restricted to bubbles which are symmetric about 
the plane 8 = in. Previous work has examined only those solutions which are fore and 
aft symmetric. The existence of asymmetric solutions is thus an open question. If 
attention is restricted to symmetric solutions then the mismatch in the counting of 
equations and unknowns for the collocation method does not occur. The various 
constraints are satisfied automatically. 

As the velocity U is increased the bubble surface distorts away from its spherical 
shape and becomes increasingly oblate. Because of this there exists a critical value 
of the velocity past which (2.13) is no longer a convergent series for the potential 
everywhere on the bubble surface. The representation for the radius will always be 
convergent provided the surface is single valued and smooth. Thus the formulation 
described above will only be useful in calculating the flow about moderately distorted 
bubbles. Numerical experiments show that the representation (2.13) fails to converge 
when the ratio of the lengths of the semimajor axis to semiminor axes or aspect 
ratio exceeds 1.4. In  order to continue past this point we recast the problem in 
oblate spheroidal coordinates. These are defined by 

x = d coshp sin[ cosc, 

y=dcoshpsin[s inc,  

z = d sinhp cos t. 

The surfaces p = constant are the family of oblate spheroids 

(2.18) 

22 
y2 + = 1. (2.19) 

X 2  + 
d2 cosh'p d2 cosh2p d2 sinh2p 

The Laplace equation can be solved by separation of variables in this coordinate 
system. The coordinate p and the potential @ are now represented by the series 

(2.20) 

N 

@(p,[)  = -Ud sinhp cos[+ C On&, (sinhp)Pn (cos t ) ,  (2.21) 
n=o 
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where the &, are the irregular Legendre functions of imaginary argument suitably 
normalized so that the coefficients D ,  are real. The Q, are defined through the 

As long as sinhp < 0.2 formula (2.22) may be reliably used to compute the Q, 
numerically. However for sinhp > 0.2 the forward recursion is highly unstable. For 
these values we set QM = 0 for some sufficiently large M and recurse backwards. The 
correct values are then recovered by normalizing with respect to the known values 
of Qo. 

Provided the bubbles are sufficiently close in shape to an oblate spheroid, highly 
deformed surfaces may be computed by this method. The parameter d in (2.18) fixes 
the size of the ellipsoid used to  approximate the bubble and is determined through 
an extra condition which effectively fits an ellipsoid to the bubble surface. There are 
several ways to accomplish this. The one used here is to fit an ellipsoid at the points 
6 = 0 and 6 = in: 

(2.23) 

We emphasize that this condition only determines an appropriate value for the 
parameter d.  Deviations from a purely ellipsoidal shape are then accounted for by the 
6-dependent terms in the series representation (2.20). 

Using equations (2.7), (2.10), (2.17) in spheroidal coordinates we solve this system 
by collocation and Newton’s method. All calculations reported here were performed 
on a VAX 111750 computer using 64 bit arithmetic. 

The accuracy of the algorithms developed above was checked in several ways. For 
bubbles with small rise velocities it is possible to develop the solution using regular 
perturbation theory. The expansion parameter is the Weber number defined in (2.9). 
The leading-order terms to O(We2) are 

R(@ = re [ l  -$We2P2 (cose)], 

@ = Ur, -- cosR-- 1 P I  (cosR)r:],l [ :e 2 r2 
(2.24) 

0- 
pi = 2-[1-iWe2]. 

re J 
This solution was used to check the algorithm based on spherical harmonics for small 
values of We and excellent agreement was obtained. For larger values of W e  
computations were performed using N = 20, 40, 60, and 80 collocation points to 
assure convergence. As discussed previously the collocation method based on 
spherical harmonics ceases to provide convergent results a t  an aspect ratio 
Rmttx/Rmin = 1.4. At this point it became necessary to  use the formulation based on 
oblate harmonics. Solutions were generated for 1.2 < Rmax/Rmin < 1.4 and compared 
with the convergent results of the spherical harmonic formulation. It proved 
impossible to  generate solutions for very low values of We sincc the sphere 
corresponds to  a singular limit (p + co, d + 0) in oblate spheroidai coordinates. 

In addition to consistency checks made by increasing the number of collocation 
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2 We' 

FIQURE 1. A plot of the quantity @We2) where We,  the Weber number, is defined in 8 1 versus the 
deformation of the bubble as represented by the aspect ratio of the bubble (R,,, = R(O =in), 
R,,, = R(O = 0)). 0,  computations performed using spherical harmonics; 0,  computations 
performed using oblate spheroidal harmonics. 

t 1.5 k: = 3.137 EE 
= 3.224 
- 3.0492 

-2 

- 1.0 

-1.5 

- 2.0 
FIGURE 2. A plot of the axisymmetric bubble shape versus the quantity (2We2).  For small values 
of We the bubble is almost spherical. For large values the bubble develops negative curvatures 
about 0 = 0. 

points the convergence of the series representation for the potential was monitored 
by examining numerically the sequence of partial sums. For all results reported here 
the series was convergent and we believe our results are accurate to a t  least five 
places in all quantities. 

In  order to compare with previous work we plot in figure 1 the quantity 2We2 
versus the aspect ratio of the bubble. It can be seen in agreement with the results of 
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Miksis et al. (1981), Moore (1965) and El Sawi (1974) that the Weber number has a 
broad maximum at W e  = 1.27.  To generate solutions near this value i t  proved 
convenient to treat the bubble velocity U as an unknown and continue in the 
oblateness parameter d. Past this maximum Weber number the free surface becomes 
flat near the semiminor axis and the Weber number decreases as the bubble becomes 
more extended. This effect can be seen in figure 2 where we plot the cross-section of 
the bubble for various values of the aspect ratio. 

Finally, the existence of multiple or non-symmetric solutions due to simple 
bifurcation was investigated by monitoring the sign of the determinant of the 
Jacobian as the continuation parameter was varied. As no change of sign was 
observed for 1 < Rmax/Rmin < 5 we conclude that there are no simple bifurcations in 
this range and that if multiple solutions exist they are isolated from the branch we 
have examined or are associated with bifurcations for which the null space of the 
singular Jacobian is of even dimension. 

3. Stability 
In this section we examine the stability of the axisymmetric bubble shapes 

computed in 5 2 to  infinitesimal three-dimensional disturbances. The governing 
equations in three dimensions are (2.2), (2 .3) .  The curvature term for three- 
dimensional surfaces is 

1 1 ED”+CD-2FD‘ -+-= 
7 (3.1) 

R ,  R2 H 3  

where E = R2 -/- Ri, 
F = R, R,, 

G = R2 sin2 B+ R;, 
H 2  = R2 [sin2 B(R2 + Ri)  + R:] 

D = - R  sinB(RR,,-2Ri-R2) 
D = R(2 sin 6 R, R, - sin 8 RR,, -k cos BRR,) 

D = - R sin 6(cos 0 sin BRR, + RR,, - 2R; - sin2 8R2).  

In  order to study the stability of (2.2),  ( 2 . 3 )  we let 

where R,  5 are the steady solutions. Substituting (3.2) into the equations of motion 
relative to the frame moving with the undisturbed bubble and linearizing in E we 
obtain 

V2@! = 0, (3.3) 

(3.4) 

@; = 
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where S / S R  denotes the functional derivative with respect to R. These equations 
have also been derived in oblate spheroidal coordinates in order to examine the 
stability of deformed bubbles. Note that both the volume and centroid constraints are 
no longer enforced in calculating the stability characteristics of the bubble. It is 
clearly correct to drop the latter as we are interested in deviations of the centroid 
from a rectilinear path. It is also not necessary to enforce volume conservation 
provided we limit our considerations to disturbances which initially do not change 
the volume. The class of disturbances treated by Hartunian & Sears are of this type. 
It is necessary to include the equation of state of the gas interior to the bubble if the 
stability to perturbations which alter the volume is to be examined. 

The linear system (3.3)-(3.5) is separable in both the t and q5 variables. It has 
solutions of the form 

m 

R'(m, 8, q5) = ewt C almP,,(8) eim#, 
l-m 

where the Gm are the associated Legendre polynomials. Note in (3.6)-(3.7) we 
observe the restriction on the eigenfunctions that for a given azimuthal wavenumber 
m, 1 2 m. Substituting (3.6)-(3.7) in (3.4)-(3.5) we obtain a generalised eigenvalue 
problem for the growth rate w and the eigenvector (a,,, blrn). 

We solve the eigenvalue problem (3.3)-(3.5) by evaluating the equations a t  the 
collocation points used to  compute the steady solution. Note that there again arises 
a mismatch in the number of equations and unknowns due to the restriction 12 m 
in (3.6)-(3.7). If we truncate these series a t  1 = N where N is the number of 
collocation points used to compute the steady solution we will generate 2N+2 
equations for 2N+ 2-2m unknowns. This difficulty may be overcome by truncating 
the series (3.6)-(3.7) a t  1 = N+m. This procedure introduces modes which cannot be 
properly resolved using N collocation points. The error incurred by this approach will 
be large for the higher spatial harmonics and thus the eigenvalues which correspond 
to these harmonics are likely to be spurious. The accuracy of the lower harmonics 
however should be unaffected. The validity of this procedure was numerically 
confirmed by monitoring convergence of the eigenvalues as the number of collocation 
points was increased. The actual eigenvalue problem was solved by the QR 
algorithm. 

The stability of a stationary gas bubble (i.e. We = 0) has been examined by 
Rayleigh. The eigenvalues may be obtained analytically in this limit and are given 
by (see, for example, Lamb 1932) 

U 
w2 = -(Z--l)(Z+l)(Z+2)y. 

Pr, 

For values of Z greater than 1 i t  is seen that w2 < 0 indicating a stable oscillation of 
the sphere. Perturbations which alter the volume of the sphere ( I  = 0) are unstable. 
This instability however only reflects the absence of an equation of state for the 
bubble interior. Without an equation of state (3.8) is valid only for I2 1. Finally we 
note that w = 0 for 1 = 1. This is a consequence of translational invariance. The shape 
of the equilibrium solution is independent of the choice of the origin and therefore the 
equilibrium solution must be exactly neutral (w = 0) with respect to  disturbances 
which are pure translations of the bubble surface, Eigenfunotions with Z = 1 
correspond to translation of the bubble centroid. For We > 0 the eigenfunctions will 
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no longer be spherical harmonics but translational invariance still implies the 
existence of a translational mode with o identically equal to zero. The above 
considerations hold however only if the correct steady state is used in performing the 
stability analysis at a given value of We.  We shall demonstrate that  if the &ability 
analysis for We > 0 is performed with respect to  an inconsistent equilibrium solution 
such as a sphere or an oblate spheroid then translational invariance is violated and 
a spurious growth rate or oscillation frequency will be obtained for the translational 
mode. 

In  order to illustrate this we shall restrict our attention to the effect of infinitesimal 
translations in the z-direction. The invariance of equations (2.6)-(2.7) implies that if 
@ ( r , 8 )  and R(8)  are solutions then the one parameter family 

sin R *Go), R + e (cos 8 --? R,), 

are also solutions. Substituting this family of solutions into the equations of motion 
and expanding to  first order in e we obtain equations identical to those obtained in 
the study of the stability of the steady state to small disturbances with the exception 
that the terms involving the time derivative of the perturbation are absent. This 
implies that 

sin 8 sin 8 
R R 

w = ~ j ,  COSe--@,, R = cose--R,, 

are eigenfunctions of the stability problem with eigenvalue zero. We have assumed 
however that the steady equations were satisfied exactly. In general there will be 
some error if an approximate steady solution is used. We have then 

@,-$@o = E K ( 8 ) ,  (3.9) 

I R2 -k 2R;- RR,+ (R2  + Ri) ( I  - (R, /R)  cot 0) 
(R2 + R;): 

Pi 1 
P 2u.2 

+- = - + E D ( @ ,  (3.10) 

where E,, ED,  are the, errors in the kinematic and dynamic conditions respectively. 
The relationship between the solution and its derivatives which guarantees the 

existence of a zero eigenvalue is now violated by an amount comparable to the error 
in the steady solution. If the errors E,, E D  are small then the eigenvalues 
corresponding to  translation will be close to  zero. If the errors are large as is the case 
when a spherical steady state is used in place of the true solution a t  large values of 
We,  then the eigenvalues can differ considerably from zero. This effect is shown in 
figure 3. We have followed Hartunian & Sears and used the spherical approximation. 

- 1 PI (cos 8) r: 
R = re,  @ = Ur,  

in (3.4), (3.5). We have plotted the square of the eigenvalue in the notation of 
Hartunian & Sears) which is zero a t  We = 0. It is seen that (A’)2 is initially negative 
indicating oscillation but eventually changes sign as We is increased and becomes 
positive indicating instability. A consistent calculation which takes into account the 
deformation of the bubble yields the result (A’)2 = 0. 
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2 Wep 

FIGURE 3. A plot of the square of the eigenvalue corresponding to 1 = 1, m = 1 as a function of 
Weber number obtained by using an inconsistent spherical steady state. Note that for (2We2 = 6) 
the value of (A')' is positive indicating a spurious instability. The correct answer, obtained when 
a consistent steady solution is used, is (A')' = 0. 

Since the steady solution is real, the eigenvalues must come in complex conjugate 
pairs. In addition the equations of motion are invariant under time reversal and it 
can be shown that if o is an eigenvalue, -o is also an eigenvalue. In general the 
eigenvalues must come in quartets if the real and imaginary parts of a given 
eigenvalue are non-zero. Such a symmetry is in fact a general property of 
Hamiltonian systems. If Re(w) =# 0 then this corresponds to instability since for 
every eigenvector with Re(w) < 0 there exists a corresponding eigenvector with 
Re(w) > 0. Thus, in contrast with dissipative systems, it is impossible for an inviscid 
system to have purely decaying eigenfunctions. The notion of spectral stability in an 
inviscid system implies that all eigenvalues lie on the imaginary axis. Under fairly 
general assumptions about the smoothness of the steady state solution as We is 
varied it can be seen that because of the constraint that the eigenvalues come in 
quartets the characteristic polynomial for the stability matrix has the property that 
the transition from a region of spectral stability to one of instability is marked by a 
coalescence of the imaginary parts of two eigenvalues. This coalescence is a necessary 
condition for the onset of instability but it is not sufficient. It is possible for a 'near 
miss' to occur in which two imaginary eigenvalues collide and then move away. 
Stronger conditions for instability can be found in the work of Mackay & Saffman 
(1986) where these ideas are discussed in connection with the stability of water 
waves. 

From (3.8) we see that there is only stable oscillation at We = 0. In  addition, by 
virtue of continuity we can label the eigenvectors by the value of 1 which they take 
a t  We = 0. Thus we expect the modes to be functions of 1, rn, and the aspect ratio 
Rmax/Rmin of the bubble. From the arguments above, instability in such an inviscid 
system can in fact only occur (at the order of linear theory) if the frequencies a t  a 
given value of m but with different values of 1 coalesce. Coalescence of frequencies 
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m = .  

FIGURE 4. The frequency of oscillation obtained from linear stability theory as a function of 
deformation of the bubble. Frequencies are scaled sown by a factor of 10. Note that the 
deformation of the bhbble breaks the degeneracy of the Rayleigh theory as given in (3.8). Note also 
that the oscillation frequency is reduced by deformation. 

possessing differing values of m is of course also possible but this would not 
correspond to instability a t  the level of linear theory. This is due to the fact that our 
steady state is axisymmetric and the application of separation of variables to the 
solution of the stability equation shows that the solutions may be partially 
parametrized by the value of the azimuthal wavenumber m. 

Convergence of the eigenvalues was monitored by performing the stability analysis 
with N = 20, 40, 60, and 80 collocation points. This confirmed the accuracy of the 
eigenvalues to a t  least five places for the range of aspect ratios 1 < Rmax/Rmin < 5 .  
The results for disturbances with azimuthal wavenumber m = 1, 2 and 3 are shown 
in figure 4. It can be seen that the effect of finite Weber number is to reduce the 
oscillation frequency. Note also that that  these disturbances are never unstable for 
the range of aspect ratios considered. The translational mode labelled I = 1, m = 1 
remained zero to five places. Thus our results conflict with those of Hartunian 
& Sears who calculated unstable solutions using a sphere and ellipsoid as 
approximations to the steady state. 

4. Conclusions 
We have developed a numerical technique to study the steady rise and stability of 

inviscid bubbles. Using this technique we have shown that the conclusions of 
Hartunian & Sears on the existence of an inviscid instability are incorrect. Use of a 
consistent approximation for the bubble steady state reveals no instability in the 
translation mode (which as shown above is unphysical) nor through a low-order 
nonlinear resonance mechanism. 

We remark that the stability analysis does indicate the existence of spiralling 
solutions. These solutions are obtained by noting that the form of the solutions to the 
stability problem developed in $3  are in fact travelling waves resulting from the 
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restoring force of surface tension. Thus the solution to the stability problem is the 
first term in an amplitude expansion for these waves. Calculation of higher-order 
nonlinear corrections results in a finite amplitude solution akin to the well-known 
solutions in the theory of water waves. 

It is easily seen by taking the real and imaginary parts of the complex 
eigenfunctions calculated in $3  that the solutions assume the form of travelling 
waves. For example, a t  a finite value of We the real part of the ( I  = 2, wz = 1) 
eigenfunction has the form 

R(e,q5, t) = R(0) +e[Pzl(8) +a,,P4,(8) + ...I cos (q5 +Qt) 

-s[a;llPll(0)+u31 Pa,(@)+ ...I sin(q5+Qt), (4.1) 

@(r ,  8, q5, t) = &(r, 0) +s b4,'++ ...I sin ($+at) 
r 

- 8 [ b,, y+ b,, + . . . cos (q5 + Qt), 1 
where R ,  6 are the axisymmetric steady solutions and Q is the angular velocity 
(Q = w/m) .  This form of the solution also suggests that  there may exist equilibria of 
the full three-dimensional equations of motion which represent steady spiralling. 
Indeed the approximate solution (4.1) represents a bubble whose centroid is 
displaced from the origin by an infinitesimal amount and thus the path of the 
centroid is a helix with radius 

R,, = [x: + y$, (4.2) 

and pitch 

where 

2nU 
psp = 7, 

xc = ~ ~ d e ~ d ( c o s s ) n ' ( 0 , q 5 , t )  sin0 cos$, 

9 r 2 ~  nt 

(4.3) 

y - - dq5 d(cos 8) R4(8, q5, t )  sin 8 sin q5; 
c - i k  J, J, 

and U is the vertical rise velocity. 
The eigenfunctions (4.1) represents the first term in an amplitude expansion of 

solutions of the full three-dimensional equations of motion which are steady in a 
frame of reference which rotates with angular velocity Q and translates with vertical 
velocity U .  We emphasize however that the properties of these spiralling solutions 
even at large values of the amplitude s are not in accord with experimental 
observations. The phase speed of these waves w is of the order (alp",;. Using 
estimates for the observed bubble size this yields a frequency which is roughly 10 
times the experimentally observed values. Thus these surface tension waves are most 
likely damped by viscous effects. Limited numerical calculations of the three- 
dimensional equations have shown that finite amplitude effects will not lower 
appreciably this high rate of spiralling and so details of the calculation are not 
presented here. 

The main conclusion of this work is that inviscid theory does not appear to provide 
a mechanism for the observed spiralling. We remark that this work only invalidates 
the use of an irrotational model over the entire bubble. Theories which assume 
irrotational flow over only the front of the bubble have been developed (Saffman 
1956) and their conclusions may remain valid. 
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